If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-297=0
a = 2; b = 10; c = -297;
Δ = b2-4ac
Δ = 102-4·2·(-297)
Δ = 2476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2476}=\sqrt{4*619}=\sqrt{4}*\sqrt{619}=2\sqrt{619}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{619}}{2*2}=\frac{-10-2\sqrt{619}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{619}}{2*2}=\frac{-10+2\sqrt{619}}{4} $
| (d+6)/2=d-3 | | 4+91x=52x+3- | | -3v-8+9v=22 | | 5v+6=9v+30= | | 6y-12=2(3y-6) | | 50x+.5=20x+.8 | | 14y-11+8y+11=5y+9 | | x+39=5x-1 | | 15x+4=9x+29 | | 78.75x+80.25=40x+95.75 | | -8.9=-6-x | | (17x+1)+(20x+14)=180 | | 5x-6-3x+10=50 | | 78.75x-80.25=40x-95.75 | | 5(3x+2)=3x+46 | | 2(x-3)-5=4x-2(1+x) | | 3(n−81)=36 | | (17x+1)+(20x+4)=180 | | 78.75-80.25x=40-95.75x | | 120+4.5x=45-0.5x | | 27-w=183 | | d/8+48=52 | | 4x+12+5x+x=180 | | 3(=4)=5x=-20 | | -3(x+3)+4x-4=-14 | | x-85=105 | | u/3=3.4 | | n+6-7=-12+1-2n-5 | | 12-3x=3(2x+5) | | 9n+4+8=-32 | | d8+48=52 | | 7=2f+5 |